Fork me on GitHub

基于树模型的信贷建模

德国信贷数据建模baseline

本文是基于3大树模型对一份德国信贷数据的建模,主要内容包含:

导入库

导入的库用于数据处理、可视化、建模等

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pandas as pd
import numpy as np

# 1、基于plotly
import plotly as py
import plotly.express as px
import plotly.graph_objects as go
py.offline.init_notebook_mode(connected = True)
from plotly.subplots import make_subplots # 多子图
# 2、基于matplotlib
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
%matplotlib inline
# 中文显示问题
#设置字体
plt.rcParams["font.sans-serif"]=["SimHei"]
#正常显示负号
plt.rcParams["axes.unicode_minus"]=False

# 3、基于seaborn
import seaborn as sns
# plt.style.use("fivethirtyeight")
plt.style.use('ggplot')

# 数据标准化、分割、交叉验证
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler,LabelEncoder
from sklearn.model_selection import train_test_split,cross_val_score

# 模型
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeRegressor,DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC

# 模型评价
from sklearn import metrics
from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import accuracy_score, recall_score, roc_auc_score, precision_score, f1_score

# 忽略notebook中的警告
import warnings
warnings.filterwarnings("ignore")

数据简介

数据来自UCI官网:http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

基本信息:1000条数据 + 20个变量 + 目标变量 + 无缺失值

特征变量的中文与英文含义:

  • 特征向量中文:1.支票账户状态;2.借款周期;3.历史信用;4.借款目的;5.信用额度;6.储蓄账户状态;7.当前就业状态;8.分期付款占可支配收入百分比;9.性别与婚姻状态;10.他人担保信息;11.现居住地;12.财产状态;13.年龄;14.其他分期情况;15.房产状态;16.信用卡数量;17.工作状态;18.赡养人数;19.电话号码注册情况;20.是否有海外工作经历

  • 特征向量对应英文:1.status_account, 2.duration, 3.credit_history, 4,purpose, 5.amount, 6.svaing_account, 7.present_emp, 8.income_rate, 9.personal_status, 10.other_debtors, 11.residence_info, 12.property, 13.age, 14.inst_plans, 15.housing, 16.num_credits, 17.job, 18.dependents, 19.telephone, 20.foreign_worker

读入数据

下载的数据没有表头,网上搜索到对应英文表头,生成DataFrame:

In [4]:

1
df.shape

Out[4]:

1
(1000, 21)

In [5]:

1
df.dtypes  # 字段类型

Out[5]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
checking_account_status    object
duration int64
credit_history object
purpose object
credit_amount int64
savings object
present_employment object
installment_rate int64
personal object
other_debtors object
present_residence int64
property object
age int64
other_installment_plans object
housing object
existing_credits int64
job object
dependents int64
telephone object
foreign_worker object
customer_type int64
dtype: object

In [6]:

1
2
3
# 不同的字段类型统计

pd.value_counts(df.dtypes.values)

Out[6]:

1
2
3
object    13
int64 8
dtype: int64

In [7]:

1
df.isnull().sum()

Out[7]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
checking_account_status    0
duration 0
credit_history 0
purpose 0
credit_amount 0
savings 0
present_employment 0
installment_rate 0
personal 0
other_debtors 0
present_residence 0
property 0
age 0
other_installment_plans 0
housing 0
existing_credits 0
job 0
dependents 0
telephone 0
foreign_worker 0
customer_type 0
dtype: int64

不同字段下的取值统计

In [8]:

1
2
columns = df.columns     # 字段
columns

Out[8]:

1
2
3
4
5
6
Index(['checking_account_status', 'duration', 'credit_history', 'purpose',
'credit_amount', 'savings', 'present_employment', 'installment_rate',
'personal', 'other_debtors', 'present_residence', 'property', 'age',
'other_installment_plans', 'housing', 'existing_credits', 'job',
'dependents', 'telephone', 'foreign_worker', 'customer_type'],
dtype='object')

1、针对字符类型字段的取值情况统计:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
string_columns = df.select_dtypes(include="object").columns

# 两个基本参数:设置行、列
fig = make_subplots(rows=3, cols=5)

for i, v in enumerate(string_columns):
r = i // 5 + 1
c = (i+1) % 5

data = df[v].value_counts().reset_index()

if c ==0:
fig.add_trace(go.Bar(x=data["index"],y=data[v],
text=data[v],name=v),
row=r, col=5)
else:
fig.add_trace(go.Bar(x=data["index"],y=data[v],
text=data[v],name=v),
row=r, col=c)

fig.update_layout(width=1000, height=900)

fig.show()

2、针对数值型字段的分布情况:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
number_columns = df.select_dtypes(exclude="object").columns.tolist()
number_columns

# 两个基本参数:设置行、列
fig = make_subplots(rows=2, cols=4) # 2行4列

for i, v in enumerate(number_columns): # number_columns 长度是8
r = i // 4 + 1
c = (i+1) % 4

if c ==0:
fig.add_trace(go.Box(y=df[v].tolist(),name=v),
row=r, col=4)
else:
fig.add_trace(go.Box(y=df[v].tolist(),name=v),
row=r, col=c)

fig.update_layout(width=1000, height=900)

fig.show()

字段处理

支票状态-checking_account_status

中文含义:现有支票帐户的状态

  • A11:<0 DM
  • A12:0 <= x <200 DM
  • A13:> = 200 DM /至少一年的薪水分配
  • A14:无支票帐户)

In [11]:

1
df["checking_account_status"].value_counts()

Out[11]:

1
2
3
4
5
A14    394
A11 274
A12 269
A13 63
Name: checking_account_status, dtype: int64

In [12]:

1
2
3
4
5
6
7
8
9
fig,ax = plt.subplots(figsize=(12,8), dpi=80)

sns.countplot(x="checking_account_status", data=df)

plt.title("number of checking_account_status")

for p in ax.patches:
ax.annotate(f'\n{p.get_height()}', (p.get_x(), p.get_height()+5), color='black', size=20)
plt.show()

在这里我们根据每个人的支票账户金额的大小进行硬编码

In [13]:

1
2
3
4
# A11:<0 DM,A12:0 <= x <200 DM,A13:> = 200 DM /至少一年的薪水分配,A14:无支票帐户
# 编码1
cas = {"A11": 1,"A12":2, "A13":3, "A14":0}
df["checking_account_status"] = df["checking_account_status"].map(cas)

借款周期-duration

中文含义是:持续时间(月)

In [14]:

1
2
duration = df["duration"].value_counts()
duration.head()

Out[14]:

1
2
3
4
5
6
24    184
12 179
18 113
36 83
6 75
Name: duration, dtype: int64

In [15]:

1
2
3
fig = px.violin(df,y="duration")

fig.show()

信用卡历史-credit_history

中文含义

  • A30:未提取任何信用/已全额偿还所有信用额
  • A31:已偿还该银行的所有信用额
  • A32:已到期已偿还的现有信用额
  • A33:过去的还款延迟
  • A34:关键帐户/其他信用额现有(不在此银行)

In [17]:

1
2
ch = df["credit_history"].value_counts().reset_index()
ch

Out[17]:

index credit_history
0 A32 530
1 A34 293
2 A33 88
3 A31 49
4 A30 40

In [18]:

1
2
3
4
5
6
7
8
fig = px.pie(ch,names="index",values="credit_history")

fig.update_traces(
textposition='inside',
textinfo='percent+label'
)

fig.show()

1
2
3
4
5
# 编码2:独热码

df_credit_history = pd.get_dummies(df["credit_history"])
df = df.join(df_credit_history)
df.drop("credit_history", inplace=True, axis=1)

借款目的-purpose

借款目的

In [20]:

1
2
3
4
5
6
# 统计每个目的下的人数,根据人数的多少来实施硬编码
purpose = df["purpose"].value_counts().sort_values(ascending=True).reset_index()

purpose.columns = ["purpose", "number"]

purpose

1
2
# 编码3
df["purpose"] = df["purpose"].map(dict(zip(purpose.purpose,purpose.index)))

信用额度-credit_amount

表示的是信用额度

In [22]:

1
px.violin(df["credit_amount"])

账户储蓄-savings

账户/债券储蓄(A61:<100 DM,A62:100 <= x <500 DM,A63:500 <= x <1000 DM,A64:> = 1000 DM,A65:未知/无储蓄账户

In [24]:

1
string_columns

Out[24]:

1
2
3
4
5
Index(['checking_account_status', 'credit_history', 'purpose', 'savings',
'present_employment', 'personal', 'other_debtors', 'property',
'other_installment_plans', 'housing', 'job', 'telephone',
'foreign_worker'],
dtype='object')

In [25]:

1
df["savings"].value_counts()

Out[25]:

1
2
3
4
5
6
A61    603
A65 183
A62 103
A63 63
A64 48
Name: savings, dtype: int64

In [26]:

1
2
3
4
# 编码6:硬编码
savings = {"A61":1,"A62":2, "A63":3, "A64":4,"A65":0}

df["savings"] = df["savings"].map(savings)

目前状态-present_employment

  • A71:待业
  • A72:<1年
  • A73:1 <= x <4年
  • A74:4 <= x <7年
  • A75:…> = 7年

In [28]:

1
df["present_employment"].value_counts()

Out[28]:

1
2
3
4
5
6
A73    339
A75 253
A74 174
A72 172
A71 62
Name: present_employment, dtype: int64

In [29]:

1
2
3
# 编码7:独热码

df_present_employment = pd.get_dummies(df["present_employment"])

In [30]:

1
2
3
df = df.join(df_present_employment)

df.drop("present_employment", inplace=True, axis=1)

个人婚姻状态和性别-personal

个人婚姻状况和性别(A91:男性:离婚/分居,A92:女性:离婚/分居/已婚,A93:男性:单身,A94:男性:已婚/丧偶,A95:女性:单身)

In [31]:

1
2
3
4
5
6
# 编码8:独热码

df_personal = pd.get_dummies(df["personal"])
df = df.join(df_personal)

df.drop("personal", inplace=True, axis=1)

其他担保人-other_debtors

A101:无,A102:共同申请人,A103:担保人

In [32]:

1
2
3
4
5
6
# 编码9:独热码

df_other_debtors = pd.get_dummies(df["other_debtors"])
df = df.join(df_other_debtors)

df.drop("other_debtors", inplace=True, axis=1)

资产-property

In [33]:

1
2
3
4
5
6
# 编码10:独热码

df_property = pd.get_dummies(df["property"])
df = df.join(df_property)

df.drop("property", inplace=True, axis=1)

住宿-housing

A151:租房,A152:自有,A153:免费

In [34]:

1
2
3
4
5
6
# 编码11:独热码

df_housing = pd.get_dummies(df["housing"])
df = df.join(df_housing)

df.drop("housing", inplace=True, axis=1)

其他投资计划-other_installment_plans

A141:银行,A142:店铺,A143:无

In [35]:

1
2
3
4
5
6
7
8
9
fig,ax = plt.subplots(figsize=(12,8), dpi=80)

sns.countplot(x="other_installment_plans", data=df)

plt.title("number of other_installment_plans")

for p in ax.patches:
ax.annotate(f'\n{p.get_height()}', (p.get_x(), p.get_height()+5), color='black', size=20)
plt.show()

1
2
3
4
5
6
# 编码12:独热码

df_other_installment_plans = pd.get_dummies(df["other_installment_plans"])
df = df.join(df_other_installment_plans)

df.drop("other_installment_plans", inplace=True, axis=1)

工作-job

  • A171 : 非技术人员-非居民
  • A172:非技术人员-居民
  • A173:技术人员/官员
  • A174:管理/个体经营/高度合格的员工/官员

In [37]:

1
2
3
4
5
6
7
8
9
fig,ax = plt.subplots(figsize=(12,8), dpi=80)

sns.countplot(x="job", data=df)

plt.title("number of job")

for p in ax.patches:
ax.annotate(f'\n{p.get_height()}', (p.get_x(), p.get_height()+5), color='black', size=20)
plt.show()

1
2
3
4
5
6
# 编码13:独热码

df_job = pd.get_dummies(df["job"])
df = df.join(df_job)

df.drop("job", inplace=True, axis=1)

电话-telephone

A191:无,A192:有,登记在客户名下

In [39]:

1
2
3
4
5
6
# 编码14:独热码

df_telephone = pd.get_dummies(df["telephone"])
df = df.join(df_telephone)

df.drop("telephone", inplace=True, axis=1)

是否国外工作-foreign_worker

A201: 有,A202: 无

In [40]:

1
2
3
4
5
6
# 编码15:独热码

df_foreign_worker = pd.get_dummies(df["foreign_worker"])
df = df.join(df_foreign_worker)

df.drop("foreign_worker", inplace=True, axis=1)

两种类型顾客统计-customer_type

预测类别:1 =良好,2 =不良

In [41]:

1
2
3
4
5
6
7
8
9
fig,ax = plt.subplots(figsize=(12,8), dpi=80)

sns.countplot(x="customer_type", data=df)

plt.title("number of customer_type")

for p in ax.patches:
ax.annotate(f'\n{p.get_height()}', (p.get_x(), p.get_height()+5), color='black', size=20)
plt.show()

打乱数据shuffle

In [42]:

1
2
3
4
from sklearn.utils import shuffle

# 随机打乱数据
df = shuffle(df).reset_index(drop=True)

建模

数据分割

In [44]:

1
2
3
4
5
6
# 选取特征
X = df.drop("customer_type",axis=1)

# 目标变量
y = df['customer_type']
from sklearn.model_selection import train_test_split

In [45]:

1
2
# 2-8比例
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.2, random_state=42)

数据标准化

In [46]:

1
2
3
ss = StandardScaler()

X_train = ss.fit_transform(X_train)

In [47]:

1
y_train

Out[47]:

1
2
3
4
5
6
7
8
9
10
11
12
556    1
957 1
577 2
795 2
85 1
..
106 1
270 2
860 1
435 1
102 2
Name: customer_type, Length: 200, dtype: int64

In [48]:

1
2
3
4
# 分别求出训练集的均值和标准差

mean_ = ss.mean_ # 均值
var_ = np.sqrt(ss.var_) # 标准差

将上面求得的均值和标准差用于测试集中:

In [50]:

1
2
# 归一化之后的测试集中的特征数据
X_test = (X_test - mean_) / var_

模型1:决策树

In [51]:

1
2
3
dt = DecisionTreeClassifier(max_depth=5)

dt.fit(X_train, y_train)

Out[51]:

1
DecisionTreeClassifier(max_depth=5)

In [52]:

1
2
3
# 预测
y_pred = dt.predict(X_test)
y_pred[:5]

Out[52]:

1
array([2, 1, 1, 2, 1])

In [53]:

1
2
3
# 混淆矩阵
confusion_mat = metrics.confusion_matrix(y_test,y_pred)
confusion_mat

Out[53]:

1
2
array([[450, 118],
[137, 95]])

In [54]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 混淆矩阵可视化

classes = ["良好","不良"]

disp = ConfusionMatrixDisplay(confusion_matrix=confusion_mat, display_labels=classes)
disp.plot(
include_values=True, # 混淆矩阵每个单元格上显示具体数值
cmap="GnBu", # matplotlib识别的颜色图
ax=None,
xticks_rotation="horizontal",
values_format="d"
)

plt.show()

1
2
3
4
5
6
## auc-roc

auc_roc = metrics.roc_auc_score(y_test, y_pred) # 测试值和预测值
auc_roc

0.5008681398737251

模型2:随机森林

In [56]:

1
2
rf = RandomForestClassifier()
rf.fit(X_train, y_train)

Out[56]:

1
RandomForestClassifier()

In [57]:

1
2
3
# 预测
y_pred = rf.predict(X_test)
y_pred[:5]

Out[57]:

1
array([1, 1, 1, 2, 1])

In [58]:

1
2
3
# 混淆矩阵
confusion_mat = metrics.confusion_matrix(y_test,y_pred)
confusion_mat

Out[58]:

1
2
array([[476,  92],
[142, 90]])

In [59]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 混淆矩阵可视化

classes = ["良好","不良"]

disp = ConfusionMatrixDisplay(confusion_matrix=confusion_mat, display_labels=classes)
disp.plot(
include_values=True, # 混淆矩阵每个单元格上显示具体数值
cmap="GnBu", # matplotlib识别的颜色图
ax=None,
xticks_rotation="horizontal",
values_format="d"
)

plt.show()

1
2
3
4
5
6
## auc-roc

auc_roc = metrics.roc_auc_score(y_test, y_pred) # 真实值和预测值
auc_roc

0.6129796017484215

模型3:XGboost

In [62]:

1
2
3
4
5
6
from xgboost.sklearn import XGBClassifier
## 定义 XGBoost模型
clf = XGBClassifier()

# X_train = X_train.values
# X_test = X_test.values

In [63]:

1
clf.fit(X_train, y_train)

Out[63]:

1
2
3
4
5
6
7
8
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
importance_type='gain', interaction_constraints='',
learning_rate=0.300000012, max_delta_step=0, max_depth=6,
min_child_weight=1, missing=nan, monotone_constraints='()',
n_estimators=100, n_jobs=0, num_parallel_tree=1, random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,
tree_method='exact', validate_parameters=1, verbosity=None)

In [65]:

1
2
3
4
5
# 先转成数组再传进来
X_test = X_test.values

y_pred = clf.predict(X_test)
y_pred[:5]

Out[65]:

1
array([1, 1, 1, 2, 1])

In [66]:

1
2
3
# 混淆矩阵
confusion_mat = metrics.confusion_matrix(y_test,y_pred)
confusion_mat

Out[66]:

1
2
array([[445, 123],
[115, 117]])

In [67]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 混淆矩阵可视化

classes = ["良好","不良"]

disp = ConfusionMatrixDisplay(confusion_matrix=confusion_mat, display_labels=classes)
disp.plot(
include_values=True, # 混淆矩阵每个单元格上显示具体数值
cmap="GnBu", # matplotlib识别的颜色图
ax=None,
xticks_rotation="horizontal",
values_format="d"
)

plt.show()

1
2
3
4
5
6
## auc-roc

auc_roc = metrics.roc_auc_score(y_test, y_pred) # 真实值和预测值
auc_roc

0.6438805245264692

模型优化

基于相关系数进行特征筛选

1
2
3
4
5
6
7
8
# y:customer_type是目标变量

# 1、计算每个特征和目标变量的相关系数

data = pd.concat([X,y],axis=1)

corr = data.corr()
corr[:5]

相关系数的描述统计信息:发现整体的相关系数(绝对值)都比较小

热力图

1
2
3
4
5
6
7
ax = plt.subplots(figsize=(20,16))

ax = sns.heatmap(corr,
vmax=0.8,
square=True,
annot=True, # 显示数据
cmap="YlGnBu")

根据相关系数筛选前20个变量

1
2
3
4
k = 20

cols = corr.nlargest(k,"customer_type")["customer_type"].index
cols
1
2
3
4
Index(['customer_type', 'duration', 'checking_account_status', 'credit_amount',
'A30', 'A31', 'A124', 'A72', 'A141', 'A151', 'A201', 'A153', 'A92',
'installment_rate', 'A102', 'A142', 'A91', 'A32', 'A174', 'A71'],
dtype='object')
1
2
3
4
5
6
7
cm = np.corrcoef(data[cols].values.T)

hm = plt.subplots(figsize=(10,10)) # 调整画布大小
hm = sns.heatmap(data[cols].corr(), # 前10个属性的相关系数
annot=True,
square=True)
plt.show()

筛选相关系数绝对值大于0.1的变量

1
2
3
4
5
6
7
8
9
10
11
12
threshold = 0.1

corrmat = data.corr()
top_corr_features = corrmat.index[abs(corrmat["customer_type"]) > threshold]

plt.figure(figsize=(10,10))

g = sns.heatmap(data[top_corr_features].corr(), # 大于0.5的特征构成的DF的相关系数矩阵
annot=True,
square=True,
cmap="nipy_spectral_r"
)

新数据建模

1
2
# 筛选出为True的特征
useful_col = corrmat.index[abs(corrmat["customer_type"]) > threshold].tolist()
1
2
new_df = df[useful_col]
new_df.head()

数据切分

1
2
3
4
5
# 选取特征
X = new_df.drop("customer_type",axis=1)

# 目标变量
y = new_df['customer_type']
1
2
# 3-7比例
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.3, random_state=42)

标准化

1
2
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
1
2
3
4
5
6
7
8
# 分别求出训练集的均值和标准差

mean_ = ss.mean_ # 均值
var_ = np.sqrt(ss.var_) # 标准差

# 归一化之后的测试集中的特征数据

X_test = (X_test - mean_) / var_

建模

1
2
3
from xgboost.sklearn import XGBClassifier
## 定义 XGBoost模型
clf = XGBClassifier()
1
clf.fit(X_train, y_train)
1
2
3
4
5
6
7
8
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
importance_type='gain', interaction_constraints='',
learning_rate=0.300000012, max_delta_step=0, max_depth=6,
min_child_weight=1, missing=nan, monotone_constraints='()',
n_estimators=100, n_jobs=0, num_parallel_tree=1, random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,
tree_method='exact', validate_parameters=1, verbosity=None)

In [80]:

1
2
3
4
5
# 先转成数组再传进来
X_test = X_test.values

y_pred = clf.predict(X_test)
y_pred[:5]

Out[80]:

1
array([2, 1, 2, 2, 1])

In [81]:

1
2
3
# 混淆矩阵
confusion_mat = metrics.confusion_matrix(y_test,y_pred)
confusion_mat

Out[81]:

1
2
array([[406,  94],
[ 96, 104]])

In [82]:

1
2
3
4
## auc-roc

auc_roc = metrics.roc_auc_score(y_test, y_pred) # 真实值和预测值
auc_roc

Out[82]:

1
0.666

优化方向

经过3种不同树模型的建模,我们发现模型的AUC值并不是很高。AUC 值是一个概率值,AUC 值越大,分类算法越好。可以考虑优化的方向:

  1. 特征工程处理:这个可以重点优化。目前对原始的特征变量使用了3种不同类型编码、独热码和硬编码;有些字段的编码可能需要优化
  2. 相关系数筛选变量:相关系数是用来检测两个连续型变量之间线性相关的程度;特征变量和最终因变量的关系不一定线性相关。本文中观察到相关系数都很低,似乎佐证了这点。后续考虑通过其他方法来筛选变量进行建模
  3. 模型调优:通过网格搜索等优化单个模型的参数,或者通过模型融合来增强整体效果

本文标题:基于树模型的信贷建模

发布时间:2022年07月16日 - 13:07

原始链接:http://www.renpeter.cn/2022/07/16/%E5%9F%BA%E4%BA%8E%E6%A0%91%E6%A8%A1%E5%9E%8B%E7%9A%84%E4%BF%A1%E8%B4%B7%E5%BB%BA%E6%A8%A1.html

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

Coffee or Tea