Fork me on GitHub

基于决策树的红酒分类可视化

本文中讲解是的利用决策树的方法将sklearn中自带的红酒数据进行划分和可视化显示,学习决策树的几个重要参数。

决策树在sklearn的应用

决策树Decision Tree是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规
则,并用树状图的结构来呈现这些规则,以解决分类和回归问题 。

解决两个重点问题

  • 如何从数据中找出最佳节点和最佳分枝
  • 如何让决策树停止生长,防止过拟合

sklearn中的决策树

决策树相关的类都在tree模块下面,总共5个

建模的基本流程

  • 实例化
  • 拟合fit
  • 计算准确度score
1
2
3
4
5
from sklearn import tree              # 导入需要的模块

clf = tree.DecisionTreeClassifier() # 实例化
clf = clf.fit(X_trian, y_train) # 用训练数据训练模型
result = clf.score(X_test, t_test) # 导入测试数据集,从接口中调用需要的信息

重要参数

决策树算法中所有的参数为

1
2
3
4
5
6
class sklearn.tree.DecisionTreeClassifier (criterion=’gini’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
class_weight=None, presort=False)

1.criterion
用来确定不纯度的计算方法有两种,不纯度越低越好

  • 信息熵entropy,实际上是信息增益

  • 基尼系数gini (默认)

    二者比较

  • 信息熵对不纯度更加敏感

  • 信息熵更慢些,存在对数运算

  • 数据维度大,噪音很大使用基尼系数

  • 当拟合程度不够的时候,使用基尼系数

导入模块和库

1
2
3
4
5
6
import pandas as pd
import matplotlib.pyplot as plt

from sklearn import tree # tree模块
from sklearn.datasets import load_wine # 导入红酒数据
from sklearn.model_selection import train_test_split # TTS模块

数据生成和信息查看

1
2
wine = load_wine()   # 实例化红酒数据
wine.data
1
2
3
4
5
6
7
8
9
array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
1.065e+03],
[1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
1.050e+03],
[1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
1.185e+03],
...,
[1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,
5.600e+02]])
1
2
3
4
5
wine.data.shape
# 结果:178个样本,13个属性
(178, 13)
# 3种分类
wine.target
1
2
3
4
5
6
7
8
9
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2])

重点:如何将样本数据集和输出标签生成表格形式

1
pd.concat([pd.DataFrame(wine.data), pd.DataFrame(wine.target)], axis=1)


1
wine.feature_names   # 13个属性名称
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 结果
['alcohol',
'malic_acid',
'ash',
'alcalinity_of_ash',
'magnesium',
'total_phenols',
'flavanoids',
'nonflavanoid_phenols',
'proanthocyanins',
'color_intensity',
'hue',
'od280/od315_of_diluted_wines',
'proline']
1
2
wine.target_names  # 标签的3个分类
array(['class_0', 'class_1', 'class_2'], dtype='<U7')
1
2
3
Xtrain, Xtest, ytrain, ytest = train_test_split(wine.data, wine.target, test_size=0.3)   # 随机划分数据
Xtrain.shape
(124, 13)
1
ytrain
1
2
3
4
5
6
array([1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1, 1, 0,
0, 1, 1, 0, 1, 2, 2, 2, 0, 2, 0, 0, 2, 0, 1, 0, 0, 0, 2, 1, 0, 1,
2, 1, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2,
0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 2, 1, 1, 2, 0, 2, 2, 2, 1, 0,
2, 0, 2, 0, 2, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0,
0, 1, 2, 0, 2, 0, 2, 0, 0, 1, 1, 2, 0, 0])

建模过程

1
2
3
4
5
clf = tree.DecisionTreeClassifier(criterion="entropy")  
clf = clf.fit(Xtrain, ytrain)
score = clf.score(Xtest, ytest) # 返回预测的准确度
score
0.9259259259259259
1
2
import os   # 画图的时候一定要加上路径
os.environ["PATH"] += os.pathsep + 'D:/Tools/graphviz-2.38/release/bin'

画图

1
2
3
4
5
6
7
8
9
10
11
12
feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类',
'花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸']

import graphviz
dot_data = tree.export_graphviz(clf
,feature_names = feature_name
,class_names = ["琴酒","雪莉","贝尔摩德"]
,filled = True # 是否填充颜色
,rounded = True) # 框的形状

graph = graphviz.Source(dot_data)
graph

结果信息

1
clf.feature_importances_   # 使用特征的数量的重要性
1
2
3
array([0.02366882, 0.04362795, 0.        , 0.        , 0.        ,
0. , 0. , 0. , 0. , 0.16528255,
0. , 0.43075257, 0.33666811])
1
[*zip(feature_name,clf.feature_importances_)]  # 将使用的特征和名称进行一一对应
1
2
3
4
5
6
7
8
9
10
11
12
13
[('酒精', 0.023668823820059623),
('苹果酸', 0.04362794529024377),
('灰', 0.0),
('灰的碱性', 0.0),
('镁', 0.0),
('总酚', 0.0),
('类黄酮', 0.0),
('非黄烷类酚类', 0.0),
('花青素', 0.0),
('颜色强度', 0.16528255077367338),
('色调', 0.0),
('od280/od315稀释葡萄酒', 0.4307525705140722),
('脯氨酸', 0.3366681096019511)]
  • random_state:设置随机模式的参数,默认是None,高维数据表现更明显
  • splitter:有两个参数供选择
    • best:默认,每次选择更重要的属性进行分类
    • random:保证选择特征的随机性,树会更深更大,降低对训练数据的拟合
1
2
3
4
5
6
clf = tree.DecisionTreeClassifier(criterion="entropy"
,random_state=50 # 设置随机模式,保证结果不变
,splitter="random"
)
clf = clf.fit(Xtrain, ytrain)
score = clf.score(Xtest, ytest) # 返回预测的准确度
1
2
3
4
5
6
7
8
9
10
11
12
feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类',
'花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸']

import graphviz
dot_data = tree.export_graphviz(clf
,feature_names = feature_name
,class_names = ["琴酒","雪莉","贝尔摩德"]
,filled = True # 是否填充颜色
,rounded = True) # 框的形状

graph = graphviz.Source(dot_data)
graph

剪枝参数

过拟合:在训练数据集上表现的很好,在测试数据集上却很差

  • max_depth
    限制树的最大深度,超过设定深度的树枝全部剪掉
  • min_samples_leaf & min_samples_split
    min_samples_leaf限定,一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本
    min_samples_split限定,一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
clf = tree.DecisionTreeClassifier(criterion="entropy"
,random_state=50 # 设置随机模式,保证结果不变
,splitter="random"
# 可以调节3个参数,比较每次的得分大小
,max_depth=3
,min_samples_leaf=10
,min_samples_split=10
)
clf = clf.fit(Xtrain, ytrain)

dot_data = tree.export_graphviz(clf
,feature_names = feature_name
,class_names = ["琴酒","雪莉","贝尔摩德"]
,filled = True # 是否填充颜色
,rounded = True) # 框的形状

graph = graphviz.Source(dot_data)
graph

1
2
3
score = clf.score(Xtest, ytest)    # 返回预测的准确度 
score
0.7777777777777778
  • max_features
    • 限制分枝是考虑的特征个数,超过限制的个数直接舍弃掉
    • 限制高维数据的过拟合剪枝参数,方法暴力
  • min_impurity_decrease
    • 限制信息增益的大小
    • 小于设置值不会发生分枝
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 学习曲线

test = []
for i in range(10):
clf = tree.DecisionTreeClassifier(criterion="entropy"
,random_state=50 # 设置随机模式,保证结果不变
,splitter="random"
,max_depth=i+1
# ,min_samples_leaf=10
# ,min_samples_split=10
)
clf = clf.fit(Xtrain, ytrain)
score = clf.score(Xtest, ytest) # 返回预测的准确度
test.append(score)
plt.plot(range(1,11), test, color="red", label="max_depth")
plt.legend()
plt.show()

重要属性和接口

1
2
# 测试样本所在的叶子节点的索引
clf.apply(Xtest)
1
2
3
4
array([ 6,  7,  6, 18, 18,  6, 12, 16, 16,  9,  7, 16, 18,  7,  5, 12, 14,
18, 7, 6, 7, 6, 12, 7, 18, 9, 5, 7, 5, 16, 12, 6, 7, 5,
14, 18, 9, 12, 6, 9, 7, 9, 16, 12, 14, 12, 7, 6, 18, 5, 14,
18, 7, 12], dtype=int64)
1
2
#返回分类测试样本的分类或者回归结果
clf.predict(Xtest)
1
2
3
array([1, 2, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 2, 2, 1, 1, 0, 2, 1, 2, 1,
1, 2, 0, 1, 2, 2, 2, 0, 1, 1, 2, 2, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1,
1, 1, 2, 1, 0, 2, 1, 0, 2, 1])

一个属性:feature_importances

四个接口:fit,score,apply,predict

本文标题:基于决策树的红酒分类可视化

发布时间:2019年09月22日 - 23:09

原始链接:http://www.renpeter.cn/2019/09/22/%E5%9F%BA%E4%BA%8E%E5%86%B3%E7%AD%96%E6%A0%91%E7%9A%84%E7%BA%A2%E9%85%92%E5%88%86%E7%B1%BB%E5%8F%AF%E8%A7%86%E5%8C%96.html

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

Coffee or Tea